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Abstract 

Background: With epigenome-wide mapping of DNA methylation, a number of novel smoking-

associated loci have been identified.  

Objectives: We aimed to assess dose-response relationships of methylation at the top hits from 

the epigenome-wide methylation studies with smoking exposure as well as with total and cause-

specific mortality. 

Methods: In a population-based prospective cohort study in Germany, methylation was 

quantified in baseline blood DNA of 1000 older adults by the Illumina 450K assay. Deaths were 

recorded during a median follow-up of 10.3 years. Dose-response relationships of smoking 

exposure with methylation at 9 CpGs were modeled by restricted cubic spline regression. 

Associations of individual and aggregate methylation patterns with all-cause, cardiovascular and 

cancer mortality were assessed by multiple Cox regression. 

Results: Clear dose-response relationships with respect to current and lifetime smoking intensity 

were consistently observed for methylation at 6 of the 9 CpGs. Seven of the 9 CpGs were also 

associated with mortality outcomes to various extents. A methylation score based on the top 2 

CpGs (cg05575921 and cg06126421) showed the strongest associations with all-cause, 

cardiovascular and cancer mortality, with adjusted hazard ratios (95% CI) of 3.59 (2.10, 6.16), 

7.41 (2.81, 19.54), 2.48 (1.01, 6.08), respectively, for participants with methylation levels in the 

lowest quartile at both CpGs. Adding methylation at those 2 CpGs into a model that included the 

variables of the Systematic Coronary Risk Evaluation chart for fatal cardiovascular risk 

prediction improved the predictive discrimination. 

Conclusion: The novel methylation biomarkers are highly informative for both smoking 

exposure and smoking-related mortality outcomes. In particular, these biomarkers may 
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substantially improve cardiovascular risk prediction. Nevertheless, the findings of the present 

study need to be further validated in additional large longitudinal studies.  
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Introduction 

Tobacco smoking has been recognized as a risk factor for a variety of complex diseases (CDC 

2014), including cardiovascular diseases (Ezzati et al. 2005b), at least 15 types of cancer (Ezzati 

et al. 2005a), and pulmonary diseases (Decramer et al. 2012). Nevertheless, accurate prediction 

of smoking-attributable health risk is still hampered by various factors (CDC 2010). In particular, 

it is well known that self-reported smoking exposure suffers from recall bias or intentional 

underreporting (Connor Gorber et al. 2009; Rebagliato 2002). Even though a number of 

biomarkers are well established, such as breath carbon monoxide (CO), and cotinine levels, they 

exclusively reflect short-term smoking exposure and are of limited use for quantifying 

cumulative exposure and consequently for predicting smoking-related risk (CDC 2010). DNA or 

protein adducts are considered as integrative biomarkers reflecting internal effective dose of 

smoking, which may, however, only be useful for carcinogenic risk assessment (CDC 2010; 

Lodovici and Bigagli 2009). In cardiovascular risk assessment, although several biomarkers have 

been described and used, no biomarker has yet been identified for specifically predicting 

smoking-related risk (CDC 2010).  

Recent advances in genome-wide methylation profiling have opened new avenues in search for 

biomarkers reflecting both current and lifetime smoking exposure which might have the potential 

to enhance prediction of smoking-related risks. Recently, a number of novel smoking-associated 

blood DNA methylation biomarkers were identified by using the Infinium HumanMethylation 

Illumina 450K BeadChip (Joubert et al. 2012; Shenker et al. 2013a; Zeilinger et al. 2013), among 

which 7 loci located in 4 intragenic or intergenic regions [including F2RL3 (cg03636183), AHRR 

(cg21161138 and cg05575921), 2q37.1 (cg21566642, cg01940273, and cg05951221), 6p21.33 

(cg06126421)] were the top 7 CpGs reported by both epigenome-wide studies conducted in 
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adults (Shenker et al. 2013a; Zeilinger et al. 2013). To further explore the use of methylation 

levels of these regions for quantifying biologically effective smoking exposure and for enhancing 

risk prediction of smoking-related disease, we carried out comprehensive analyses on the 

associations of methylation at 9 CpGs [the top 7 CpGs listed above and other 2 CpGs (AHRR 

(cg23576855); 2q37.1 (cg06644428)) that were also reported to be smoking-associated in those 

regions (Shenker et al. 2013a; Zeilinger et al. 2013)] with both current and lifetime smoking 

exposure as well as mortality in a population-based cohort of older adults. In addition, we aimed 

to evaluate if these methylation biomarkers can improve the fatal cardiovascular risk prediction 

estimated by the Systematic Coronary Risk Evaluation (SCORE) chart of the European Society 

of Cardiology (Conroy et al. 2003). 

Methods 

Study design and data collection  

The study subjects were selected from the ESTHER study, a statewide population-based cohort 

study conducted in South-west Germany (Schoettker et al. 2013). Briefly, 9949 older adults (age 

50-75 years) were enrolled by their general practitioners during a routine health check-up 

between July 2000 and December 2002, and followed up since then. The distribution of socio-

demographic factors and major risk factors in the cohort was similar to the distribution seen in 

representative surveys of the Germany population in the corresponding age range (Low et al. 

2004). A genome-wide methylation screen was performed in baseline blood samples of 1000 

participants who were recruited between July and October 2000 (i.e., those with the longest 

follow-up time) and included in the current analysis. The study was approved by the ethics 

committees of the University of Heidelberg and of the state medical board of Saarland, Germany. 

Written informed consent was obtained from all participants. 
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Participants’ socio-demographic characteristics, lifestyle factors, health status, and history of 

major diseases at baseline were obtained by a standardized self-administrated questionnaire. 

Detailed information on lifetime active smoking was also ascertained from the self-administrated 

questionnaire, including age at initiation and intensity of smoking at various ages, as well as age 

of smoking cessation for former smokers. Additional information on height, weight, blood 

pressure, and prevalent diseases, such as diabetes, hypertension, or cardiovascular disease was 

extracted from a standardized form filled by the general practitioners during the health check-

ups. Prevalent cardiovascular disease at baseline was defined by either physician-reported 

coronary heart disease or a self-reported history of myocardial infarction, stroke, pulmonary 

embolism or revascularisation of coronary arteries. Prevalent cancer [ICD-10 C00-C99 except 

non-melanoma skin cancer (C44)]) was determined by self-report or record linkage with data 

from the Saarland Cancer Registry (http://www.krebsregister.saarland.de/ziele/ziel1.html). Blood 

samples (21 ml from each participant) were taken during the health check-up and aliquoted and 

stored at -80 ◦C until further processing. Total cholesterol level was measured in serum by 

standard high-performance liquid chromatography methods (Schottker et al. 2013). Deaths 

during follow-up (between 2000 and end of 2011) were identified by record linkage with 

population registries in Saarland with the few participants moving out of Saarland being 

censored at the date last known to be alive. Information about the major cause of death was 

obtained from death certificates provided by the local public health offices, and coded with ICD-

10-codes. Cardiovascular and cancer deaths were defined by ICD-10 codes I00-I99 and C00-C99 

[except non-melanoma skin cancer (C44)], respectively. 
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Methylation assessment  

DNA was extracted from whole blood samples collected at baseline by a salting out procedure 

(Miller et al. 1988), and allocated in the 96-well format. Three random duplicate samples were 

placed on each plate as quality controls. The Infinium HumanMethylation450K BeadChip Assay 

(Illumina.Inc, San Diego, CA, USA) was used to quantify DNA methylation at 485,577 CpG 

sites. Briefly, a sample of 1.5µg genomic DNA was bisulfite converted, and 200ng bisulfite-

treated DNA was applied to the 450K BeadChips. The samples were analyzed following the 

manufacturer’s instruction at the Genomics and Proteomics Core Facility of German Cancer 

Research Center, Heidelberg, Germany. Illumina’sGenomeStudio® (version 2011.1; 

Illumina.Inc.) was employed to extract DNA methylation signals from the scanned arrays 

(Module version 1.9.0; Illumina.Inc.) and to calculate methylation intensity (β value) as a ratio of 

the methylated signal over the sum of the methylated and unmethylated signals at each CpG 

according to the manufacturer’s guide without additional background correction. Data were 

normalized to internal controls provided by Illumina (Illumina normalization). Methylation 

intensities at the 9 CpGs were extracted from the 450K data.  

Statistical analysis 

Median methylation intensities at the 9 CpGs were determined for strata of sociodemographic 

characteristics, lifestyle factors, and prevalent diseases, and differences in methylation intensities 

between strata were examined by Kruskal-Wallis tests. Correlations between methylation 

intensity at the 9 CpGs were assessed by Spearman rank correlation coefficients. The 

associations between smoking indicators (including smoking status, current intensity of smoking, 

cumulative dose of smoking, and time since cessation of smoking) and methylation intensity at 

the 9 CpGs were assessed by linear regression models, controlling for batch effect, age (years), 
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sex, body mass index (BMI; <25/ 25.0-<30.0/ ≥30.0 kg/m2), physical activity 

(inactive/low/medium or high), and prevalence of cardiovascular disease (I20-I16, I60-I69), 

diabetes (E10-E14) and cancer (C00-C99 except C44) at baseline. Dose-response relationships of 

current and lifetime smoking intensity, and time since smoking cessation with methylation 

intensity were assessed using restricted cubic spline (RSC) regression (Desquilbet and Mariotti 

2010), controlling for the aforementioned confounders. 

The associations of methylation intensities at each of the 9 CpGs with all-cause mortality were 

first examined by Kaplan-Meier plots and log-rank tests. Then Cox regression models were fit 

adjusting for age (years), sex and batch effect (Model I). Further models were additionally 

adjusted for smoking status (never/former/current smoker) (Model II) and for systolic blood 

pressure (mmHg), total cholesterol level (mg/dL), body mass index (BMI; <25/ 25.0-<30.0/ 

≥30.0 kg/m2), physical activity (inactive/low/medium or high), and prevalence of cardiovascular 

disease (I20-I16, I60-I69), diabetes (E10-E14) and cancer (C00-C99 except C44) at baseline 

(Model III). Methylation intensity was entered into the models either as a categorical variable 

(using the highest quartiles as reference level) or as a continuous variable (calculating hazard 

ratios (HR) for a decrease in methylation intensity by one standard deviation). In parallel, the 

associations between smoking at baseline and all-cause mortality were estimated by Cox 

regression as well, with and without controlling for methylation intensities to explore the role of 

DNA methylation in smoking-related mortality. The proportional hazards assumption was 

assessed by martingale-based residuals (Lin et al. 1993). These preliminary analyses showed 

methylation at 2 of the 9 CpGs (cg05575921, cg06126421) to be most strongly associated with 

all-cause mortality, whereas much less strong or non-significant associations were observed for 

the other 7 CpGs. Additional preliminary analyses were conducted by L1-penalized Cox model 
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(Benner et al. 2010; Goeman 2010) with 9 CpGs and other risk factors as covariates; in this 

model only cg05575921 and cg06126421 were selected among the 9 CpGs. We therefore carried 

out analyses on all-cause and cause-specific mortality, including cardiovascular disease (CVD), 

cancer and other mortality, using a methylation-based score developed according to these 2 

CpGs. Categories of the score were 2, 1, and 0, for participants in the lowest quartiles of both 

CpGs, in one of the two CpGs, and none of the two CpGs, respectively. In addition, the analyses 

were repeated after joint classification of participants according to both methylation score and 

sex.  

To further assess the potential contributions of the smoking-associated CpGs for fatal 

cardiovascular risk prediction, methylation intensity at 9 CpGs individually and jointly added to 

a Cox regression model consisting of variables of the SCORE (Conroy et al. 2003), including 

age (years), sex, systolic blood pressure (mmHg), current smoking (yes/no), and total cholesterol 

(mg/dL) and using cardiovascular mortality as the dependent variable, additionally controlling 

for batch effect. Model fit was compared by the Akaike's information criterion (AIC) and the 

likelihood ratio (LR) tests. Discrimination of the models was evaluated by Harrell's C statistics 

(Harrell et al. 1996) and the over-optimism was corrected using .632 bootstrap analysis with 

1000 replications [for this purpose, a SAS Macro was adapted from Miao’s work (Miao et al. 

2013)]. Bootstrapping is a well-established approach for validation of a predictive model through 

quantifying the degradation in model predictive accuracy when applied in different data sources, 

which is known as over-optimism. The improvement in model performance by adding 

methylation intensity was examined by both the net reclassification improvement (NRI) and the 

integrated discrimination improvement (IDI). The NRI assesses if participants are classified into 

clinically relevant risk categories by adding a new factor (e.g. methylation marker) to the risk 
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prediction model (e.g. SCORE model). Absolute risk predictions were first calculated by Cox 

regression model with and without methylation marker for each individual, followed by 

assigning risk categories according to the recommended 10-year risk categories: 0-5%, >5-

10%, >10-20% and >20% of predicted probability for a cardiovascular event (Cook 2007; 

Pencina et al. 2008). Movements are considered separately for cases (deaths) and controls 

(survivors), and deemed as correct direction if cases move into a higher risk category and 

controls move into a lower risk category. NRI = [(#cases up – #cases down) / #cases] – 

[(#controls up – #controls down) / #controls]. IDI estimates the mean difference in predicted 

probability for cases and controls over all possible cut-off points between models with and 

without methylation marker (Cook 2010; Pencina et al. 2008). Calibration of all assessed models 

was examined by May-Hosmer's simplification of the Gronnesby-Borgan test (May and Hosmer 

2004). The study population was divided into 5 subgroups according to the quintiles of the ranks 

based on their estimated risk probability, and model calibration was deemed satisfactory if p-

values were above 0.05 for comparison of the observed and expected cases in each subgroup. 

Potential multicollinearity when simultaneously adding both CpGs in the model was assessed by 

variance inflation factor (VIF) and tolerance values, which did not indicate any relevant 

multicollinearity (e,g, VIF=1.46 and tolerance=0.69 when adding cg05575921 and cg06126421). 

Sensitivity analyses were carried out by excluding participants with prevalent CVD at baseline 

(n=29).  

The penalized Cox regression analyses were conducted using R-package ‘penalized’ and all the 

other analyses were carried out in SAS 9.3 (SAS Institute, Cary, NC). 
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Results 

Of 1000 participants included in current analysis, mortality follow-up was available for 999 

subjects. Of the 9 CpG sites assays, cg21566642, cg23576855, and cg21161138 had 3, 1, and 1 

missing values, respectively, and all other CpGs had complete data. Characteristics of the study 

population at baseline are shown in Table 1. Equal numbers of men and women, who were of 

German nationality, were included. Mean age was 62 years, and 33.9% of participants were 

younger than 60 years. More than half of the participants had ever smoked and 19% still smoked 

at the time of recruitment, among whom male (61.3%) and younger (<60 years, 45.2%) 

participants were somewhat overrepresented. During a median follow-up time of 10.3 years, 143 

participants died. Among 135 participants with death certificates (94.4%), 50 died from CVD, 49 

died from cancer, and 36 died from other diseases. 

Methylation intensities by demographic and behavioral factors  

Methylation intensities at the 9 CpGs across various strata of characteristics of the study 

population are shown in Table 1 (for AHRR cg05575921 and 6p21.33 cg06126421) and Table S1 

(for all other CpGs). Men had lower methylation intensities than women at all 9 CpG sites (all p 

< 0.0001). Methylation was not significantly associated with age (p >0.05), except at 2q37.1 

cg06644428 (p <0.0001). Major differences were observed between never, former and current 

smokers. Methylation levels at all 9 CpGs were lower in current smokers than in never smokers 

and intermediate in former smokers, and all of the difference across the three group were 

statistically significant (p < 0.0001)  
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Correlations of methylation intensities at the 9 CpGs 

Mutual Spearman correlation coefficients for methylation intensities at all CpGs except 

cg06644428 were 0.46–0.93; Spearman correlation coefficients between cg06644428 and other 

CpGs were 0.18-0.66 (Supplemental Material, Table S2). 

Methylation intensities by smoking characteristics 

Table 2 shows the association between smoking behaviour and methylation intensities at 

cg05575921 and cg06126421 estimated by linear regression (results for the other 7 CpGs which 

showed very similar patterns are presented in Table S3). Compared to participants who never 

smoked, current and former smokers had the lowest and intermediate methylation levels at both 

CpGs, respectively. Methylation intensities were inversely associated with both current and 

lifetime smoking intensity, and positively associated with time since cessation. Estimated dose-

response curves for smoking behaviour with methylation intensity at the 2 CpGs are shown in 

Figure 1. A steep decrease in methylation intensity was observed with increasing smoking 

intensity up to approximately 15 cigarettes per day and with increasing cumulative smoking up 

to approximately 30-40 pack-years, followed by further gradual decrease at higher current and 

lifetime smoking intensity. Among former smokers, methylation intensity steadily increased with 

time since cessation up to approximately 20-25 years after quitting and levelled off thereafter. 

Similar patterns of dose-response curves were also observed for most of the other 7 CpGs (with 

exception of cg05951221, cg23576855 and cg06644428 for current smoking intensity, 

cg06644428 for pack-years, and cg23576855 and cg06644428 for time after quitting smoking; 

Figure S1).  
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Methylation intensities and mortality 

Figure S2 depicts the survival experience according to quartiles of methylation intensity at the 9 

CpGs: a gradient of lower survival among participants with lower methylation levels was 

observed for 7 of 9 CpGs (except cg23576855 and cg06644428). The associations of methylation 

intensity at the individual CpGs with all-cause mortality are further presented in Table S4. After 

multivariate adjustment, the strongest and statistically significant associations were estimated for 

2 CpGs (cg05575921 and cg06126421), with HR = 2.45 (95% CI: 1.26, 4.79) and HR = 2.34 

(95% CI: 1.27, 4.30), respectively, for the lowest quartile compared to the highest quartile. In 

addition, a decrease in methylation intensity by one standard deviation was associated with an 

increase in all-cause mortality by 15% - 60% for 7 CpGs (except cg23576855 and cg06644428). 

In addition, a 1-SD decrease in methylation intensity was associated with higher all-cause 

mortality for 7 CpGs (HR 1.15–1.59, with p<0.05 for 5 CpGs), while HRs for cg23576855 and 

cg06644428 were 0.97 and 1.00, respectively.  

Table 3 shows the associations of score-based methylation with all-cause and cause-specific 

mortality. Multivariate adjusted HRs (95% CI) for cardiovascular, cancer, and other mortality 

were 7.41 (95% CI: 2.81, 19.54), 2.48 (95% CI: 1.01, 6.08) and 2.78 (95% CI: 0.97, 7.98), 

respectively, for participants in the lowest quartile of methylation for both cg05575921 and 

cg06126421 compared with participants who were not in the lowest quartile of methylation for 

either CpG. By contrast, the strong associations between current smoking and all mortality 

outcomes were substantially attenuated or disappeared after adjustment for methylation-based 

score. Joint classification by sex and methylation demonstrated clear dose-response relationships 

of the methylation score with mortality in both sexes (Table S5).  
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Methylation intensity and fatal cardiovascular risk prediction  

Table 4 and Table S6 present the increment in the performance indicators of the SCORE in 

prediction of fatal CVD by adding methylation intensity. The largest improvement was observed 

when including cg05575921 and cg06126421: Harrell's C statistics increased from 0.754 for the 

SCORE-only model to 0.822 and from 0.736 to 0.779 after correction for over-optimism (Table 

4). Adding the 2 CpGs also led 18 cases and 82 controls to move up, and 11 cases and 151 

controls to move down, which resulted in a NRI of 21.92% (p-value=0.049) and a significant IDI 

of 3.73% (p-value=0.005). Additionally adding methylation at other CpGs did not lead to a 

further improvement in fatal CVD mortality prediction (Table S6). Even though NRI and IDI 

increased with additional CpG included in the model, a substantial proportion of controls, who 

were supposed to move to lower risk categories, moved to higher risk categories along with cases 

moving to higher risk categories. The improvement in risk prediction became larger when 

excluding participants with CVD at baseline (n=216; Table S7). The Gronnesby–Borgan test 

indicated the new model was also well-calibrated in both full and sensitivity analyses (all 

p >0.05).  

Discussion 

In this population-based cohort study, we found clear dose-response relationships of current and 

lifetime smoking exposure as well as time since smoking cessation with site-specific 

methylation, which were consistent among 6 CpGs located in AHRR (cg05575921, cg21161138), 

F2RL3 (cg03636183), 2q37.1 (cg21566642, cg01940273), and 6p21.22 (cg06126421). 

Methylation at 7 CpGs (all above + cg05951221) was also associated with mortality outcomes to 

various extents. A score based on methylation at the top 2 CpGs (cg05575921 and cg06126421) 

provided very strong associations with all-cause, cardiovascular and cancer mortality. Moreover, 
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integrating methylation at these 2 CpGs into the conventional risk factors substantially improved 

the accuracy of fatal cardiovascular risk prediction, and reclassified a substantial proportion of 

individuals to higher or lower risk categories. 

A biomarker reflecting long-term past smoking exposure is desirable, in particular for accurate 

evaluation of smoking cessation as well as assessment of smoking-related disease risk (CDC 

2010). DNA methylation biomarkers might be promising candidates for this purpose. 

Methylation at 9 loci targeted in our study was reported to be strongly associated with smoking 

exposure by both previous two genome-wide methylation studies (Shenker et al. 2013a; 

Zeilinger et al. 2013). In current study, distinct and rather consistent dose-response patterns of 

methylation with respect to both lifetime cumulative smoking exposure and time since cessation 

were observed for 6 of the 9 CpGs, which are, of note, similar to the dose-response patterns 

observed between smoking and smoking-related diseases. For example, cardiovascular risk 

increases sharply at low levels of cigarette consumption and then plateaues at higher level of 

smoking (CDC 2010); the reduction of cardiovascular risk becomes evident within the initial 

years after quitting smoking and remains slightly elevated for more than a decade (CDC 2010; 

Kramer et al. 2006; Lightwood and Glantz 1997). The observed dose-response pattern of these 6 

CpGs with current and lifetime smoking behavior was also consistent with dose-response 

patterns of methylation at the F2RL3 gene previous identified by our group in a large study 

specifically focusing on this site (Zhang et al. 2014). Additionally, in the study by Shenker et al, 

a methylation index combining 4 of the 9 CpGs investigated in our study (cg23576855, 

cg06644428, cg21566642, and cg06126421) provided superior performance in distinguishing 

former smokers from never smokers (area under the curve (AUC) = 0.82 (95% CI, 0.96 - 0.99)), 

compared to cotinine (AUC = 0.47 (95% CI, 0.32 - 0.63)) (Shenker et al. 2013b). Our study 



Environ Health Perspect DOI: 10.1289/ehp.1409020 
Advance Publication: Not Copyedited 
 
 

16 
 

addressing associations of methylation patterns with both smoking and smoking-related mortality 

suggested that the identified DNA methylation biomarkers might be markers of cumulative 

smoking exposure-associated risk. 

The AHRR gene, known as tumor repressor (Zudaire et al. 2008), codes a protein involved in 

multiple pathophysiological pathways, such as metabolism of tobacco smoke components (Kasai 

et al. 2006; Moennikes et al. 2004), and regulation of cell proliferation and differentiation 

(Haarmann-Stemmann et al. 2007; Pot 2012). Hypomethylation of cg05575921 at AHRR has 

been reported to be associated with increasing lymphoblast AHRR gene expression in vivo 

(Monick et al. 2012). It has also been observed that AHRR expression in human lung tissues was 

inversly correlated with methylation levels of cg23576855 and cg21161138 at AHRR, with 5.7-

fold increased expression in 5 current smokers compared to 5 non-smokers (Shenker et al. 

2013a). AHRR and the aryl hydrocardon receptor (AHR) constitute a feedback loop in which the 

AHR heterodimer activates the expression of the AHRR gene, and the expressed AHRR inhibits 

the function of AHR in oncogenesis (Mimura et al. 1999). It has been shown that tobacco 

smoking triggers the production of AHR that mediates dioxin toxicity and other pathological 

effects (Martey et al. 2005; Meek and Finch 1999). Therefore, it is plausible to assume that 

demethylation/overexpression of the AHRR gene may result from smoking-induced increase in 

AHR activation. The gene product of F2RL3, the thrombin protease-activated receptor-4 (PAR-

4), plays roles in inflammatory reactions and blood coagulation (Leger et al. 2006), and other 

pathophysiology commonly described in smoking-induced conditions (Leone 2007; Rahman and 

Laher 2007). Hypomethylation at F2RL3 has been suggested to be strongly associated with 

mortality in a cohort of 1206 patients with stable cardiovascular disease (Breitling et al. 2012). 

Interestingly, methylation at 4 CpGs assessed in our study (AHRR (cg05575921), F2RL3 
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(cg03636183), 2q37.1 (cg21566642), and 6p21.22 (cg06126421) ) were recently found to be also 

associated with a metabolic indicator of complex disorders, 4-vinylphenol sulfate (Petersen et al. 

2014). Of note, this metabolic marker has also been reported to be associated with smoking 

(Manini et al. 2003). Although the potential joint or independent epigenetic role of the various 

loci remains to be clarified, these findings as well as the disappearance or attenuation of 

association between smoking and mortality outcomes after adjustment for methylation at these 

CpGs in present study suggest that multiple DNA methylation sites are involved in mediating 

smoking-related adverse effects.  

The much stronger associations of the methylation markers with mortality outcomes, compared 

with those of commonly studied molecular and genetic biomarkers, and the attenuation or 

disappearance of the association between current smoking and mortality after adjustment for the 

methylation markers observed in our study suggest that DNA methylation biomarkers may more 

accurately summarize individuals’ smoking-related risks that accumulated through past and 

current exposure, and thus be more informative in risk assessment than self-reported smoking 

history. To our knowledge, this is the first study to evaluate the improvement in fatal 

cardiovascular risk assessment when adding DNA methylation biomarkers to conventional risk 

factors. The increment in C statistics by adding the methylation intensity at cg05575921 and 

cg06126421 (approximately 0.04) was much larger than the increment seen by adding a 

multimarker-score in the Framingham Heart Study (C statistics for model of major 

cardiovascular events increased by 0.01) (Wang et al. 2006). In another large population-based 

cohort, the investigators evaluated 6 novel biomarkers for cardiovascular risk prediction over the 

conventional markers and reported the NRI was 0.00% and 4.70% for cardiovascular events and 

coronary events (Melander et al. 2009). They obtained improved NRI by restricting the analyses 
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to individuals with intermediate risk, the reclassification, however, was essentially confined to 

down-classification of participants without events. Of note, the proportion of reclassified 

participants was substantial in our study, and consisted of not only down-classification of 

individuals without events but also up-classification of individuals with events. Given that nearly 

22% of participants were reclassified, inclusion of smoking-associated methylation markers into 

the routine screening programs, such as the SCORE risk estimation system, would benefit a 

substantial proportion of individuals in the population setting, and could greatly promote cost-

effectiveness of cardiovascular disease prevention and therapy. One the other hand, our study 

was an exploratory investigation on CVD risk prediction by methylation markers based on a 

limited number of total cardiovascular deaths and findings need to be validated in an independent 

population. The performance of these methylation markers for predicting risk of non-fatal or 

subtypes of fatal CVD, such as coronary and non-coronary heart disease, needs to be evaluated 

in further studies with high quality assessment of CVD risk factors as well as CVD events. In 

addition, to examine the generalizability of the current finding, the performance of methylation 

markers should also be assessed in relation to other well-established risk scores, such as the 

Framingham score and in geographically different populations.  

Our study has specific strengths and limitations. Strengths are the population-based prospective 

study design with comprehensive information on smoking exposure and a variety of covariates 

as well as long-term complete mortality follow-up data. A limitation is that the limited numbers 

of cause-specific deaths prevent the analyses going into more detail, such as sex-specific 

examination of CVD risk prediction, or investigation on deaths from well-known smoking-

associated subtypes of cancer (CDC 2014; Ezzati et al. 2005a). Future studies with large 

numbers of participants would be desirable to further validate our findings. Information on cause 
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of death was based on death certificates, which are known to be less than perfect. However, 

potential misclassification between the broad categories of causes of deaths assessed in our study 

is likely to be much less relevant than potential misclassification between specific causes, and 

given the rather consistent findings of an inverse association with methylation intensity for all 

categories of causes of deaths, such misclassification might only have had a small impact on the 

observed results. An additional limitation is that methylation was measured from the whole 

blood in our study, without possibilities for differentiating DNA methylation between various 

cell types. It might therefore be conceivable that differences in methylation might partly reflect 

different distribution of leukocyte cell types. However, even if the difference in the methylation 

observed in our study were primarily or partly due to shifts in leukocyte distribution, this would 

not invalidate their use as biomarkers for characterizing smoking exposure or risk prediction. On 

the contrary, given that DNA from whole blood is more readily obtainable in most clinical and 

epidemiological settings, biomarkers based on whole blood may be more relevant for clinical 

practice. Finally, our results are based on a single study, and might be overoptimistic because 

only the CpG sites that performed best in the exploratory phase of the study were used to create 

the model and outcome classification. Further validation in independent studies should therefore 

be aimed for.  

Despite its limitations, our study strongly supports the potential utility of DNA methylation 

markers as indicators for both current and lifetime smoking exposure, and for predicting 

mortality outcomes, in particular for cardiovascular mortality. Incorporation of methylation 

biomarkers into conventional risk factors might be a promising approach to improve 

cardiovascular risk assessment and disease prevention, which needs to be further validated and 
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confirmed in additional studies with large number of participants and detailed assessment of 

known determinants of cardiovascular disease.  
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Table 1. Characteristics of the study population and methylation at AHRR (cg05575921) and 6p21.33 (cg06126421) (n=1000)a 

   AHRR (cg05575921)  6p21.33  (cg06126421)  
Characteristics N (%) Median (Q1 – Q3) P-valueb Median (Q1 – Q3) P-valueb 
Sex        
    Male 500 (50.0) 0.82 (0.70 – 0.87)  0.63 (0.57 – 0.69)  
    Female 500 (50.0) 0.88 (0.84 – 0.90) <0.0001 0.69 (0.65 – 0.73) <0.0001 
Age (years)        
    < 60 339 (33.9) 0.85 (0.74 – 0.89)  0.61 (0.68 – 0.72)  
    60-64 289 (28.9) 0.86 (0.77 – 0.89)  0.66 (0.59 – 0.71)  
    65-69 226 (22.6) 0.86 (0.79 – 0.89)  0.66 (0.59 – 0.71)  
    70-75 146 (14.6) 0.86 (0.79 – 0.90) 0.20 0.66 (0.59 – 0.70) 0.20 
Smoking statusc        

Never smoker 469 (48.0) 0.88 (0.86 – 0.90)  0.70 (0.66 – 0.73)  
Former smoker 323 (33.0) 0.83 (0.77 – 0.87)  0.64 (0.58 – 0.69)  
Current smoker 186 (19.0) 0.63 (0.56 – 0.70) <0.0001 0.57 (0.51 – 0.62) <0.0001 

Body mass index (kg/m2)d        
Underweight (<18.5)   8 (0.8) 0.55 (0.66 – 0.87)  0.55 (0.50 – 0.66)  
Normal weight (18.5-<25.0) 243 (24.4) 0.86 (0.73 – 0.89)  0.66 (0.59 – 0.71)  
Overweight (25.0-<30.0) 483 (48.5) 0.86 (0.77 – 0.89)  0.67 (0.60 – 0.71)  
Obesity (≥30.0) 263 (26.4) 0.86 (0.78 – 0.89) 0.07 0.66 (0.60 – 0.72) 0.12 

Physical activitye,f        
   Inactive 203 (20.3) 0.86 (0.74 – 0.89)  0.67 (0.59 – 0.71)  
   Insufficient 438 (43.8) 0.86 (0.77 – 0.89)  0.66 (0.59 – 0.71)  
   Sufficient 358 (35.8) 0.86 (0.78 – 0.89) 0.97 0.67 (0.60 – 0.72) 0.12 
Diabetese        
    Not prevalent 837 (83.8) 0.86 (0.77 – 0.89)  0.66 (0.59 – 0.71)  
    Prevalent 162 (16.2) 0.86 (0.78 – 0.89) 0.43 0.67 (0.60 – 0.72) 0.07 
Cardiovascular diseasee         
    Not prevalent 784 (78.4) 0.86 (0.78 – 0.89)  0.67 (0.60 – 0.71)  
    Prevalent 216 (21.6) 0.84 (0.74 – 0.88) 0.08 0.64 (0.58 – 0.69) 0.0003 
Cancer        
    Not prevalent 934 (93.4) 0.86 (0.77 – 0.89)  0.66 (0.60 – 0.71)  
    Prevalent 66 (6.6) 0.86 (0.76 – 0.89) 0.71 0.65 (0.59 – 0.71) 0.37 
aData for other 7 CpGs are reported in Supplemental Material, Table S1. bKruskal–Wallis test for group differences. cData missing for 
22 participants. dData missing for 3 participants. eData missing for 1 participant. fcategories defined as follows: inactive, < 1 hr/week 
of physical activity; medium/high: ≥ 2 hr/week of vigorous physical activity or ≥ 2 hr/week of light physical activity; low, other.  
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Table 2. Association between smoking behavior and methylation intensity a  

      AHRR (cg05575921) 6p21.33  (cg06126421) 
Smoking characteristic Regression  P-value Regression  P-value 

 coefficient  coefficient  
Smoking statusb     

                 Never smoker Ref.  Ref.  
                 Former smoker -0.05 (-0.06, -0.04) <0.0001 -0.04 (-0.05, -0.03) <0.0001 
                 Current smoker -0.22 (-0.23, -0.20) <0.0001 -0.11 (-0.12, -0.10) <0.0001 

Current intensity of smokingc      
(average number of cigarettes /day)     
                     0 (Never and former smokers) Ref.  Ref.  
                     <10  -0.14 (-0.17, -0.11) <0.0001 -0.06 (-0.09, -0.04) <0.0001 
                     10-19 -0.20 (-0.22, - 0.17) <0.0001 -0.08 (-0.10, -0.06) <0.0001 
                     20-29 -0.22 (-0.23, -0.20) <0.0001 -0.11 (-0.12, -0.09) <0.0001 
                     ≥30 -0.27 (-0.31, -0.23) <0.0001 -0.13 (-0.17, -0.10) <0.0001 

Cumulative dose of smoking (pack-years)d     
                     0 (Never smokers) Ref.  Ref.  
                     <10  -0.03 (-0.05, -0.01) 0.001 -0.02 (-0.04, -0.01) 0.003 
                     10-19 -0.09 (-0.10, -0.07) <0.0001 -0.06 (-0.07, -0.04) <0.0001 
                     20-29 -0.12 (-0.13, -0.09) <0.0001 -0.08 (-0.09, -0.06) <0.0001 
                      ≥30 -0.19 (-0.21, -0.18) <0.0001 -0.11 (-0.12, -0.10) <0.0001 

Time since cessation of smoking (years)e     
                      0 (Current smokers) Ref.  Ref.  
                      <2  0.02 (-0.02, 0.06) 0.31   -0.002 (-0.04, 0.03) 0.93 
                      2-4 0.11 (0.08, 0.13) <0.0001 0.04 (0.01, 0.06) 0.002 
                      5-9 0.13 (0.11, 0.15) <0.0001 0.03 (0.01, 0.05) 0.007 
                      10-20 0.17 (0.15, 0.19) <0.0001 0.07 (0.05, 0.08) <0.0001 
                       ≥20 0.21 (0.19, 0.22) <0.0001 0.09 (0.07, 0.10) <0.0001 
a Results from linear regression, adjusted for sex, age, BMI (<25 kg/m2 / 25.0-<30.0 kg/m2 / ≥30.0 kg/m2), physical activity 
(inactive/low/medium and high), prevalence of cardiovascular disease, diabetes, and cancer, and batch effect. bData missing for 22 
participants. cData missing for 26 participants. dData missing for 68 participants. eData missing for 1 participant.  
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Table 3. Methylation score and smoking in relation to mortality outcomes 

 Methylation score a/      HR (95% CI)  
Outcome Smoking status Ntotal Cases PY IRb Model 1c Model 2d Model 3e 

All-cause mortality 0 677 60 6716.06 0.89 Ref. Ref. Ref. 
 1 151 31 1431.15 2.17 2.08 (1.33, 3.25) 2.01 (1.25, 3.25) 1.90 (1.15, 3.14) 
 2 172 52 1546.03 3.36 3.41 (2.29, 5.08) 3.69 (2.21, 6.16) 3.59 (2.10, 6.16) 

 Never smoker 469 45 4651.73 0.97 Ref. Ref. Ref. 
 Former smoker 323 58 3059.15 1.90 1.52 (1.00, 2.33) 1.14 (0.71, 1.80) 0.92 (0.56, 1.50) 
 Current smoker 186 37 1766.04 2.10 2.16 (1.37, 3.40) 0.91 (0.50, 1.63) 0.92 (0.50, 1.68) 

CVD mortality 0 677 16 6690.70 0.24 Ref. Ref. Ref. 
 1 151 14 1431.15 0.98 3.58 (1.69, 7.56) 4.37 (1.99, 9.61) 4.30 (1.89, 9.81) 
 2 172 20 1525.56 1.31 5.51 (2.68, 11.30) 9.25 (3.72, 22.96) 7.41 (2.81, 19.54) 

 Never smoker 469 17 4627.45 0.37 Ref. Ref. Ref. 
 Former smoker 323 23 3058.06 0.75 1.50 (0.75, 3.00) 0.86 (0.40, 1.88) 0.70 (0.30, 1.64) 
 Current smoker 186 10 1745.58 0.57 1.59 (0.71, 3.58) 0.38 (0.14, 1.04) 0.44 (0.15, 1.24) 

Cancer mortality 0 677 24 6690.70 0.36 Ref. Ref. Ref. 
 1 151   9 1431.15 0.63 1.47 (0.67, 3.21) 1.15 (0.49, 2.70) 1.19 (0.48, 2.93) 
 2 172 16 1525.56 1.05 2.57 (1.31, 5.02) 2.06 (0.88, 4.79) 2.48 (1.01, 6.08) 

 Never smoker 469 14 4627.45 0.30 Ref. Ref. Ref. 
 Former smoker 323 21 3058.06 0.69 1.86 (0.89, 3.89) 1.69 (0.77, 3.67) 1.37 (0.60, 3.01) 
 Current smoker 186 13 1745.58 0.74 2.43 (1.11, 5.35) 1.60 (0.59, 4.33) 1.45 (0.52, 4.08) 

Other  mortality 0 677 17 6690.70 0.22 Ref. Ref. Ref. 
 1 151   6 1431.15 0.56 2.12 (0.88, 5.12) 1.88 (0.71, 4.95) 1.69 (0.62, 4.63) 
 2 172 11 1525.56 0.85 3.18 (1.45, 7.00) 2.86 (1.02, 8.04) 2.78 (0.97, 7.98) 

 Never smoker 469 15 4627.45 0.22 Ref. Ref. Ref. 
 Former smoker 323   8 3058.06 0.43 1.46 (0.60, 3.57) 1.09 (0.42, 2.82) 0.83 (0.31, 2.23) 
 Current smoker 186 13 1745.58 0.63 2.81 (1.15, 6.89) 1.37 (0.43, 4.36) 1.35 (0.42, 4.38) 
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Abbreviations: HR, hazard ratio; CI, confidence interval; IR, incidence rate; PY, person-years; Ref., reference category. a Score was based on 
methylation intensity at cg05575921 and cg06126421, defined as follows: 2, methylation intensity in the lowest quartiles of both 2 CpG sites; 1, 
methylation intensity in the lowest quartiles of one of the 2 CpG sites; 0, other.  b Incidence rate per 100 person-years. c Model1: adjusted for 
age, sex and batch effect; d Model 2: like model 1, additionally adjusted for smoking status/methylation score; e Model 3: like model 2, 
additionally adjusted for BMI, physical activity, systolic blood pressure, total cholesterol, hypertension, and prevalent cardiovascular disease, 
diabetes, and cancer at baseline. 
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Table 4. Evaluation of the SCORE and methylation intensity in prediction of fatal cardiovascular disease (controlling for batch effect) 

  SCORE + SCORE +  SCORE + 
Characteristics SCORE cg05575921 cg06126421 cg05575921 

    cg06126421 
Overall model fit     
    -2 LOG L; df; p-value 623.93; 5; <.0001 601.82; 10; <.0001 602.21; 10; <.0001 597.54; 11; <.0001 
    AIC 633.93 621.82 622.52 619.54 
    LR test p-valuea --- 0.0005 0.0006 0.0002 

Harrell's C statistics (95% CI) 0.754 (0.691, 0.818) 0.810 (0.752, 0.867) 0.806 (0.748, 0.864) 0.822 (0.765, 0.879) 

Optimism-corrected      
Harrell's C statistics (95% CI) 0.736 (0.676, 0.791) 0.773 (0.687, 0.832) 0.766 (0.678, 0.830) 0.779 (0.693, 0.840) 

Reclassification of     
    Cases, nup/ndown Ref. 18/11 18/12 18/11 
    Controls, nup/ndown Ref. 86/157 88/146 82/151 
    NRI % (p-value) Ref. 22.14 (0.046) 18.66 (0.10) 21.92 (0.049) 
    IDI % ( p-value) Ref. 3.39 (0.02) 3.36 (0.008) 3.73 (0.005) 

Calibration       
     nobs/nexp(p-value)     
     Quintile 1 2/2 (0.82) 2/1 (0.40) 0/1 (0.26) 2/1 (0.40) 
     Quintile 2 3/4 (0.67) 2/3 (0.57) 3/3 (0.99) 1/3 (0.28) 
     Quintile 3 7/7 (0.94) 5/6 (0.82) 6/6 (0.73) 4/5 (0.74) 
     Quintile 4 10/12 (0.62) 7/10 (0.29)  8/10 (0.46) 7/10 (0.56) 
     Quintile 5 27/25 (0.68) 33/29 (0.45) 32/29 (0.55) 35/29 (0.30) 
Abbreviations: AIC, Akaike's information criterion; CI, confidence interval; IDI, Integrated discrimination improvement; LOG L, log-
likelihood; LR, likelihood ratio; nexp, number of expected events; nobs, number of observed events; NRI, net reclassification improvement; Ref., 
reference; SCORE, Systematic Coronary Risk Evaluation chart: age, sex, systolic blood pressure, current smoking and total cholesterol. a 

Comparison of SCORE+methylation-model with SCORE-model by likelihood ratio test.  
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 Figure Legend 

Figure 1. Dose-response relationships between smoking behavior and methylation intensity 

(results from restricted cubic spline regression adjusted for potential confounding factors). Panel 

A: Dose-response relationship between current intensity of smoking and methylation intensity at 

AHRR (cg05575921), and 6p21.33 (cg06126421), respectively (never and former smokers were 

defined as reference with current smoking intensity = 0).  Panel B: Dose-response relationship 

between cumulative dose of smoking and methylation intensity at AHRR (cg05575921), and 

6p21.33 (cg06126421), respectively (never smokers were defined as reference with packyears = 

0). Panel C: Dose-response relationship between time since cessation of smoking and 

methylation intensity at AHRR (cg05575921), and 6p21.33 (cg06126421), respectively (current 

smokers were defined as reference with time since cessation = 0), among former smokers.  
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Figure 1. 
                           AHRR (cg05575921)                                             6p21.33 (cg06126421)             
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